首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7666篇
  免费   842篇
  国内免费   3篇
  2023年   47篇
  2022年   51篇
  2021年   246篇
  2020年   134篇
  2019年   177篇
  2018年   205篇
  2017年   193篇
  2016年   339篇
  2015年   525篇
  2014年   522篇
  2013年   537篇
  2012年   694篇
  2011年   717篇
  2010年   459篇
  2009年   357篇
  2008年   503篇
  2007年   505篇
  2006年   381篇
  2005年   378篇
  2004年   385篇
  2003年   329篇
  2002年   301篇
  2001年   56篇
  2000年   41篇
  1999年   48篇
  1998年   63篇
  1997年   28篇
  1996年   31篇
  1995年   25篇
  1994年   23篇
  1993年   16篇
  1992年   16篇
  1991年   18篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   11篇
  1984年   16篇
  1983年   8篇
  1982年   9篇
  1981年   21篇
  1980年   13篇
  1979年   8篇
  1978年   10篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1968年   3篇
排序方式: 共有8511条查询结果,搜索用时 15 毫秒
991.
All infant mammals make a transition from suckling milk to eating solid foods. Yet, the neuromuscular implications of the transition from a liquid-only diet to solid foods are unknown even though the transport and swallowing of liquids is different from that of solids. We used legacy electromyography (EMG) data to test hypotheses concerning the changes in motor pattern and neuromuscular control that occur during the transition from an all-liquid diet to consumption of solid food in a porcine model. EMG signals were recorded from five oropharyngeal muscles in pigs at three developmental stages (infants, juveniles, and adults) feeding on milk, on food of an intermediate consistency (porridge), and on dry chow (juveniles and adults only). We measured cycle frequency and its variation in "transport cycles" and "swallow cycles". In the swallow cycles, a measure of variation of the EMG signal was also calculated. Variation in cycle frequency for transport and swallow cycles was lowest in adults, as predicted, suggesting that maturation of feeding mechanisms occurs as animals reach adulthood. Infants had lower variation in transport cycle frequency than did juveniles drinking milk, which may be due to the greater efficiency of the infant's tight oral seal against the teat during suckling, compared to a juvenile drinking from a bowl where a tight seal is not possible. Within juveniles, variation in both transport and swallow cycle frequencies was directly related to food consistency, with the highest variation occurring when drinking milk and the lowest when feeding on solid food. There was no difference in the variation of the EMG activity between intact infants and juveniles swallowing milk, although when the latter swallow porridge the EMG signals were less variable than for milk. These results suggest that consistency of food is a highly significant determinant of the variation in motor pattern, particularly in newly weaned animals.  相似文献   
992.

Background

Much of our understanding of the age-related progression of systolic blood pressure (SBP) comes from cross-sectional data, which do not directly capture within-individual change. We estimated life course trajectories of SBP using longitudinal data from seven population-based cohorts and one predominantly white collar occupational cohort, each from the United Kingdom and with data covering different but overlapping age periods.

Methods and Findings

Data are from 30,372 individuals and comprise 102,583 SBP observations spanning from age 7 to 80+y. Multilevel models were fitted to each cohort. Four life course phases were evident in both sexes: a rapid increase in SBP coinciding with peak adolescent growth, a more gentle increase in early adulthood, a midlife acceleration beginning in the fourth decade, and a period of deceleration in late adulthood where increases in SBP slowed and SBP eventually declined. These phases were still present, although at lower levels, after adjusting for increases in body mass index though adulthood. The deceleration and decline in old age was less evident after excluding individuals who had taken antihypertensive medication. Compared to the population-based cohorts, the occupational cohort had a lower mean SBP, a shallower annual increase in midlife, and a later midlife acceleration. The maximum sex difference was found at age 26 (+8.2 mm Hg higher in men, 95% CI: 6.7, 9.8); women then experienced steeper rises and caught up by the seventh decade.

Conclusions

Our investigation shows a general pattern of SBP progression from childhood in the UK, and suggests possible differences in this pattern during adulthood between a general population and an occupational population. Please see later in the article for the Editors'' Summary  相似文献   
993.
Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.  相似文献   
994.
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.  相似文献   
995.
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.  相似文献   
996.
997.
The protumorigenic functions for autophagy are largely attributed to its ability to promote cancer cell survival in response to diverse stresses. Here we demonstrate an unexpected connection between autophagy and glucose metabolism that facilitates adhesion-independent transformation driven by a strong oncogenic insult-mutationally active Ras. In cells ectopically expressing oncogenic H-Ras as well as human cancer cell lines harboring endogenous K-Ras mutations, autophagy is induced following extracellular matrix detachment. Inhibiting autophagy due to the genetic deletion or RNA interference-mediated depletion of multiple autophagy regulators attenuates Ras-mediated adhesion-independent transformation and proliferation as well as reduces glycolytic capacity. Furthermore, in contrast to autophagy-competent cells, both proliferation and transformation in autophagy-deficient cells expressing oncogenic Ras are insensitive to reductions in glucose availability. Overall, increased glycolysis in autophagy-competent cells facilitates Ras-mediated adhesion-independent transformation, suggesting a unique mechanism by which autophagy may promote Ras-driven tumor growth in specific metabolic contexts.  相似文献   
998.
Health and fitness professionals working with athletes could establish effective and safe practice and training programs if recovery time on dynamic balance from exertion was available. Research investigating the time needed to recover dynamic limits of stability (LOS) from exertion has not been reported. The purpose of this study was to determine the recovery timeline on LOS from functional fatigue in collegiate athletes. Eighteen athletes (11 men, 7 women) from Division II collegiate soccer team who passed prescreening tests to identify their fitness levels were randomly tested on 2 different days by condition (fatigue or nonfatigue). Functional fatigue was determined by using the Borg 15-point rating of perceived exertion (RPE) scale. Subjects were tested on LOS on the Biodex Balance System pre, post, 10, 15, and 20 minutes for each condition. The main effect for condition was not significant (F() = 0.004, p = 0.948), whereas the main effect for time was significant (F(4,64) = 6.167, p < 0.001). The RPE scoring revealed the significant main effect in FATIGUE (F(2.69, 45.73) = 234.8, p < 0.001). In conclusion, 20 minutes of functional activity will likely have a negative influence on dynamic balance, with balance recovery occurring within 10 minutes after the cessation of exercise in Division II collegiate soccer athletes. Moreover, the level of exertion measured by RPE would correspond to athletes' ability to control their center of mass.  相似文献   
999.
The APC/Cdh1 E3 ubiquitin ligase plays an essential role in both mitotic exit and G1/S transition by targeting key cell-cycle regulators for destruction. There is mounting evidence indicating that Cdh1 has other functions in addition to cell-cycle regulation. However, it remains unclear whether these additional functions depend on its E3 ligase activity. Here, we report that Cdh1, but not Cdc20, promotes the E3 ligase activity of Smurf1. This is mediated by disruption of an autoinhibitory Smurf1 homodimer and is independent of APC/Cdh1 E3 ligase activity. As a result, depletion of Cdh1 leads to reduced Smurf1 activity and subsequent activation of multiple downstream targets, including the MEKK2 signaling pathway, inducing osteoblast differentiation. Our studies uncover a cell-cycle-independent function of Cdh1, establishing Cdh1 as an upstream component that governs Smurf1 activity. They further suggest that modulation of Cdh1 is a potential therapeutic option for treatment of osteoporosis.  相似文献   
1000.
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号